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Abstract. We study random walks on structures intermediate to statistical and deterministic
fractals called regular random fractals, constructed introducing randomness in the distribution of
lacunas of Sierpinski carpets. Random walks are simulated on finite stages of these fractals and

the scaling properties of the mean square displacement〈R2
N 〉1/2

of N -step walks are analysed.
The anomalous diffusion exponentsνw obtained are very near the estimates for the carpets with
the same dimension. This result motivates a discussion on the influence of some types of lattice
irregularity (random structure, dead ends, lacunas) onνw , based on results on several fractals.
We also propose to use these and other regular random fractals as models for real self-similar
structures and to generalize results for statistical systems on fractals.

1. Introduction

In the study of statistical systems on fractals, they are generally divided in two classes:
deterministic (or regular) fractals, which have a definite rule of construction (like Sierpinski
gaskets and carpets), and statistical fractals, whose fractal properties are obtained as an
average (like percolation clusters or diffusion-limited aggregates—DLA). The former are
very useful to search general properties of physical systems on fractals, while the latter are
also expected to model real self-similar structures.

The study of random walks on fractal substrates has been intense in the last few years
due to their applicability to a great variety of physical problems [1, 2]. One of their
most important properties is the anomalous diffusion, i.e. the delay of the diffusion when
compared to a Euclidean lattice [2]. Then the dimension of the random walkDw is greater
than 2 in most fractals (Dw = 2 in Euclidean lattices); it is defined by

〈R2
N 〉 ∼ N2/Dw (1)

where〈R2
N 〉 is the mean-square displacement ofN -step walks.

In many deterministic finitely ramified fractals,Dw was obtained exactly [2, 3], and
in some infinitely ramified fractals accurate estimates were obtained [4]. However, these
results are somewhat disconnected from the properties of real systems because there have
not been systematic studies on the effect of randomness on physical properties of statistical
systems on fractals. On the other hand, most of the work in this area deal with percolation
clusters [5, 6], whereDw is known with good accuracy, but they cannot represent many real
fractal systems [6, 7].

The purpose of this work is to fill a gap in this field by studying random walks on a
third class of fractals called regular random fractals [8], which are intermediate between
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Figure 1. (a) Iterative construction of a Sierpinski carpet withb = 3 andm = 1; (b) construction
of a regular random fractal withb = 3 and m = 1; stagen = 1 is the generator #1;
(c) construction of a regular random fractal withb = 5, m = 9 (generator #2).

deterministic and statistical fractals. They are constructed by introducing randomness in the
distribution of lacunas of a class of deterministic infinitely ramified fractals, the Sierpinski
carpets. Figure 1(a) shows the iterative construction of a carpet with parametersb = 3 and
m = 1. At each step of the construction, the squares are divided intob2 subsquares andm
of them are eliminated according to a fixed rule, defined by the generator (stagen = 1).
The fractal obtained after an infinite number of iterations has fractal dimension

DF = ln(b2 − m)

ln b
. (2)

The corresponding regular random fractals are constructed eliminating them subsquares
randomly among theb2 subsquares, as illustrated in figures 1(b) and (c). This rule defines
an ensemble of fractals for eachb andm, with fractal dimension also given by equation (1).

No previous study of physical systems on regular random fractals appears to be available,
but there are some reasons to start these investigations. For example, the comparison with
results on deterministic fractals will show the influence of randomness and the limitations
of these fractals to represent real structures. Moreover, as they are infinitely ramified, it is
interesting to compare these with results of the most intensively studied statistical fractals,
percolation clusters and DLA, which are finitely ramified.

In section 2 of this paper we present the results of simulations of random walks on finite
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Table 1. Fractal dimensionDF , critical exponentνw , the corresponding dimensionDw and
correction to scaling constantA for random walks on regular random fractals and the exponent
νw for the Sierpinski carpets with the same generators.

Generator DF νw Dw A νw (carpet)

1 1.8928 0.470± 0.005 2.13± 0.03 −1.0 ± 0.5 0.476± 0.005
2 1.7227 0.445± 0.005 2.25± 0.03 −1.5 ± 0.5 0.458± 0.004

stages of the construction of regular random fractals. It is shown that〈R2
N 〉

L
, obtained in

lattices of lengthL, obeys finite-size scaling andDw is estimated. The comparison with
results in the corresponding Sierpinski carpets will show thatDw is weakly affected by
the random distribution of lacunas (section 3). We also compare the results for several
fractals (statistical and deterministic) and present a discussion on the influence of geometric
properties ofDw.

2. Numerical simulations

The generators of the ensembles of fractals studied here are shown in figures 1(b) and (c),
numbered 1 and 2, respectively. Their fractal dimensions are shown in table 1. At each
step of the construction of a fractal with generator 2 (figure 1(c)), the new lacunas with
m = 9 subsquares are randomly distributed as blocks, like the lacuna with 1 subsquare
of figure 1(b). In the regular fractals (figure 1(a)), the lattice sites were considered at
the vertices of the non-eliminated squares, and non-active sites inside the lacunas. In the
random lattices, the non-active sites are moved when the lacunas are distributed, but the
sites at the border of the lacunas are still active.

We simulated random walks confined in stages 1–7 of fractals with generator 1 and
stages 1–5 of fractals with generator 2 (the lattices have free edges). The characteristic
length of stagen is L = bn. The initial site of each walk is randomly chosen over the
lattice and at each step the walker has equal probability to move to any neighbouring
active site, up toNMAX steps. Averaging over a certain number of initial sites (number of
generated walks), we obtain〈R2

N 〉
L

for eachN in a lattice of lengthL. This procedure is
repeated for various members of each ensemble of fractals, each obtained from a different
distribution of lacunas using the same generator. Averaging over these lattices we obtain
the final estimates of〈R2

N 〉
L

.
It was shown [4] that random walks on deterministic fractals (Sierpinski gaskets, carpets,

pastry shells) obey the finite-size scaling hypothesis

〈R2
N 〉1/2

L
≈ Lf (LN−νw ) (3)

wheref is a generic function of its argumentx = LN−νw , and

νw = 1

Dw

. (4)

Estimates ofνw were obtained with accuracy around 1% from plots of〈R2
N 〉1/2

L
/L versusx:

the data for various lengthsL collapse into a single curve (f (x)) when the correct value
of νw is chosen. It parallels standard methods to calculate critical exponents of magnetic
systems from results of simulations in finite lattices [9].

For the mean number of distinct visited sites〈SN 〉 a similar finite-size scaling hypothesis
holds, including a logarithmic correction in its asymptotic behaviour [10]. It was used to
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prove the Alexander–Orbach scaling relationDs = 2DF /Dw [11] in the Sierpinski carpets
and in the Eden trees (Ds is the spectral dimension), showing the importance of considering
corrections to finite-size scaling relations in order to obtain accurate results.

For random walks on regular random fractals we propose an extension of relation (3)
which includes a correction to scaling:

〈R2
N 〉1/2

L
≈ L(1 + A/N)f (LN−νw ) (5)

whereA is a constant. It is expected thatf (x) → x−1 whenx → ∞, so that

〈R2
N 〉 ∼ Nνw(1 + A/N). (6)

However, the analysis of the plots ofy = 〈R2
N 〉1/2

L
/L(1 + A/N) versusx = LN−νw for

several lengthsL has to be more carefully done than in the deterministic lattices. The
fractal properties of deterministic lattices are present in all lengthscales, and so those data
collapse forx large as well asx ≈ 1 (see [4] and [10]), which correspond to smallN and
very largeN , respectively. But in random fractals we expect self-similarity to be observed
only in lengths greater than the lattice parameter and less than the characteristic length of
the whole structure. The first condition implies that the length of the walk (∼ Nνw ) must
be greater thanb, which is the smallest characteristic length of the structure. It is obtained
by analysing only walks withN > 50 in all lattices. The second condition implies

Nνw � L ⇒ x � 1 (7)

where we only consider data withx & 10.
These conditions limit the number of fractals we can analyse, because we need data

from (at least) two stagesn in the same range ofx, and the simulations in large lattices
become difficult. For example, the stagen = 7 of fractals with generator 1 are 2188×2188
square lattices with lacunas, where we simulated 4× 105 walks with NMAX = 105 steps to
get reliable estimates of〈R2

N 〉1/2
L

(the accuracy is approximately 2% for the greatest lattices
and better for small lattices).

In figures 2 and 3 we ploty againstx for stagesn = 4–7 of fractals with generator
1, usingνw = 0.470 andA = −1 (equation (5)).〈R2

N 〉1/2
L

was averaged over 40 different
members of this ensemble, i.e. 40 different lattices for each lengthL.

Figure 2. Plot of y = 〈R2
N 〉1/2

L
/L(1 + A/N) againstx = LN−νw for random walks on finite

stages of a fractal with generator 1, in the range 86 x 6 35.
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Figure 3. Plot of y = 〈R2
N 〉1/2

L
/L(1 + A/N) againstx = LN−νw for random walks on finite

stages of a fractal with generator 1, in the range 356 x 6 120.

When equation (3) is considered, the collapse of these data occurs only in limited ranges
of the variablex, becauseN must simultaneously be large, so thatA/N ≈ 0, and satisfy
relation (7). It is possible only using very large lattices.

We note that, if only one member of this ensemble of regular random fractals is
considered (corresponding to a particular distribution of lacunas), the data for different
values ofL collapse into a single curve using the sameνw. It indicates that the use of
large lattices also ensures that the walkers will visit a large number of different microscopic
environments, thus representing approximately the whole ensemble of fractals.

For the ensemble of fractals with generator 2, 20 members were considered for the
averaging process. In figures 4 and 5 we ploty againstx for these lattices, usingνw = 0.445
andA = −1.5.

In table 1 we show the final estimates ofνw and the corresponding estimates ofDw for
the two ensembles of regular random fractals. The error bars are obtained from plots for

Figure 4. Plot of y = 〈R2
N 〉1/2

L
/L(1 + A/N) againstx = LN−νw for random walks on finite

stages of a fractal with generator 2, in the range 86 x 6 35.
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Figure 5. Plot of y = 〈R2
N 〉1/2

L
/L(1 + A/N) againstx = LN−νw for random walks on finite

stages of a fractal with generator 2, in the range 356 x 6 120.

different values ofνw and the constantA, and considering the errors in〈R2
N 〉

L
. The results

for the corresponding Sierpinski carpets are also shown in table 1.

3. Discussion and conclusions

The estimate ofνw for the regular random fractals are slightly smaller than the estimates
for the corresponding carpets (see table 1). This weak dependence ofνw on randomness
motivates the use of deterministic fractals (or the corresponding regular random fractals) as
approximate models for real fractals. It is also important for the study of the dependence
of νw on the fractal geometry.

As previously shown with calculations on Sierpinski carpets, lacunarity has a very small
effect onνw [4]. Lacunarity measures the inhomogeneity of the distribution of mass in the
fractal [12], and the critical behaviour of other statistical systems, like self-avoiding walks,
depend on it [13]. Although geometric properties other thanDF and lacunarity certainly
influenceνw, no relation valid for many classes of fractals was proposed. In order to address
this question, we present in table 2 the estimates ofνw for the random regular fractals studied
here and for some other finitely ramified structures (statistical and deterministic), covering
a large range of values ofDF .

We note that the presence of dead ends (or dangling ends) is crucial for the delay of
the diffusion. They are parts of the structures where the walk is forced to return over its
own path. Among those fractals, dead ends occur in two-dimensional percolation clusters
[14, 15], DLA [16, 17] and theT -fractal [4]. Each of these fractals may be compared to the
other ones with similarDF (see table 2), which do not have this property and clearly have
greaterνw. The presence of lacunas that restrict the path of the walk is responsible for the
anomalous diffusion on the structures without dead ends, but their effect is not as strong.

In random regular fractals with generator 2 and the generalized Sierpinski gasket with
scale factorb = 8 [18], with very similar DF , the difference ofνw is relatively small
(≈ 3%). This difference may be explained by the ramification, respectively infinite and
finite. On the infinitely ramified fractals, the walks have many paths to contour the lacunas,
in opposition to the finitely ramified ones, so the diffusion is slightly easier in the former.

Although it seems to be impossible to obtain a complete definition of universality classes
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Table 2. Fractal dimensionsDF and anomalous diffusion exponentνw for several fractals,
including the regular random fractals with generators 1 and 2. Numbers (1), (2) and (3) indicate
sets of fractals with similar or equalDF .

Fractal DF νw

(1) Regular random fractals 1 1.892. . . 0.470± 0.005
(1) 2-D percolation clusters 1.895. . .a 0.3483± 0.0001b

(2) Regular random fractals 2 1.722. . . 0.445± 0.005
(2) Sierpinski gasket withb = 8 1.723c 0.4304. . .c

(2) 2-D DLA 1.712± 0.003d 0.379± 0.007e

(3) Sierpinski gasket withb = 2 1.584. . .f 0.4306. . .f

(3) T-fractal 1.584. . .g 0.3868. . .g

a [14]
b [15]
c νw is obtained from the estimate ofDs [18] and the scaling relationDs = 2DF νw [11].
d [16]
e [17]
f [2]
g [3]

for random walks or other statistical systems on fractals, the above discussion provides a
basis to relate geometric properties toνw (or Dw), with a reasonable precision, in structures
with similar DF . It may guide investigations on models for real self-similar structures. For
example, it was proposed that silica aerogels should be represented by infinitely ramified
fractals, the Sierpinski pastry shells [7]. Regular random fractals constructed from generators
of deterministic fractals may be used to model such structures, with some advantages over
other statistical fractals, such as the easier rules of construction and exactly knownDF .

We suppose this work will bring new perspectives to the study of critical phenomena on
fractal substrates and related fields, by showing that regular random fractals are useful tools
to generalize results obtained in deterministic fractals and presenting relations between the
fractal geometry and the anomalous diffusion exponentνw.
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